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� A low-operating pressure evaporator using capillary-assisted enhanced tubes is tested.
� Parallel fins, fin height and surface area are the main features of capillary-assisted tubes.
� Single-phase heat transfer coefficient is the bottleneck of the capillary-assisted tubes.
� Height of water column in the evaporator should be maintained below the tube diameter.
� Increasing the chilled water mass flow rate by 6.1 times increases the cooling power by 20%.
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a b s t r a c t

This study investigates the performance of a low-operating pressure evaporator using capillary-assisted
tubes for adsorption cooling systems (ACS). When using water as a refrigerant in an ACS, the operating
pressure is low (<5 kPa) and the performance of the system is severely affected when using conventional
evaporators. This problem can be addressed by using capillary-assisted evaporators. A custom-built appa-
ratus for evaluating cooling power is used to test five types of enhanced tubes with different fin geome-
tries. Tests were performed with 10–20 �C chilled water inlet temperatures and water vapor pressures of
0.5–0.8 kPa. The results show that the capillary-assisted tubes provide 1.6–2.2 times greater heat transfer
rate compared to a plain tube. Comparing tubes with equivalent inner surface areas (0.049 m2/m) and
equivalent outer surface areas (0.193 m2/m), and different fin heights indicates that tubes with
1.42 mm parallel continuous fins (26 fins per inch (FPI)) have a 13% higher heat transfer coefficient than
those with 0.9 mm fins (40 FPI). The effects of refrigerant height, dead volume inside the evaporator and
chilled water mass flow rate on the performance of evaporator are studied. The heat transfer rate
increases by 65% when the water height to tube diameter ratio decreased from 1.8 to less than 1.
Increasing the chilled water mass flow rate from 2.5 to 15.3 kg/min (6.1 times higher) increases evapo-
rator heat transfer coefficient by 110%.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Sustainable development requires that energy utilization be
balanced with environmental protection. Conventional vapor com-
pression systems significantly increase fuel consumption and
greenhouse gas production. The U.S. annually consumes about 40
billion liters of fuel for heating, ventilation, and air conditioning
(HVAC) systems of light duty vehicles [1]. This makes sustainable
air conditioning (A/C) systems important with regard to problems
associated with conventional vapor compression refrigeration
cycles (VCRCs). Thermally-driven adsorption cooling systems
(ACSs) can replace VCRCs where waste heat above 60 �C is avail-
able. An internal combustion engine (ICE) of a light-duty vehicle
dissipates about 40% of fuel energy in the form of high temperature
exhaust gas and dissipates an additional 30% of fuel energy
through the engine coolant [2]. Therefore, a VCRC of a light-duty
vehicle can be replaced by an ACS, and a portion of the waste heat
of the ICE could generate the cooling power required for vehicle air
conditioning.
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Nomenclature

A heat transfer surface area (m2)
A/C air conditioning
ACS adsorption cooling system
cp heat capacity at constant pressure (J/kg K)
D, d diameter (m)
DTLMTD log mean temperature difference (K)
FPI fins per inch
h heat transfer coefficient (W/(m2 K))
ICE internal combustion engine
k thermal conductivity (W/(m K))
L heat transfer length of the evaporator tube (m)
_m mass flow rate (kg/s)
P pressure (Pa)
_Q total heat transfer rate (W)

_q heat transfer rate (W)
r radius (m)
T temperature (�C)
t time (s)
U overall heat transfer coefficient (W/(m2 K))
VCRC vapor compression refrigeration cycle

Subscripts
chilled chilled water
evap evaporator
i inside surface/in
o outside surface/out
1, 2 thermocouple locations
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ACS uses an adsorber bed in which an adsorbent, such as zeo-
lite, silica gel, or activated carbon cyclically adsorbs and desorbs
a refrigerant (adsorptive), such as water, methanol, or ammonia.
Of these materials, water has the highest enthalpy of vaporization
(latent heat), 2465.1 kJ/kg at 15 �C. However, an ACS evaporator
operates between 3 and 20 �C corresponding to water saturation
pressures of 0.76–2.34 kPa [3]. In this case, a conventional evapo-
rator has poor performance.

ACS with water as the refrigerant uses a low pressure (LP) con-
denser and evaporator, and pressure drop can significantly affect
the overall performance of the ACS. Shell-and-tube heat exchang-
ers in which superheated water vapor flows in the shell-side of
the heat exchanger and condenses on the outer surface of the tubes
are commonly used for ACS LP condensers [4]. At the end of the
condensation process, the liquid water accumulates at the outlet
of the condenser. However, the design of a LP evaporator is differ-
ent from that of a LP condenser. Accumulation of liquid water in an
evaporator creates a water column, which results in a depth
dependent hydrostatic pressure difference between the liquid–va-
por interface and the bottom of the evaporator. For example, hav-
ing a liquid water column of 5 cm in an evaporator creates a
hydrostatic pressure of 0.49 kPa (qlw � g � hlw = 1000 kg/
m3 � 9.81 m/s2 � 0.05 m). For an evaporator operating at
1.71 kPa, this hydrostatic pressure increases the saturation tem-
perature of water from 15 �C at the surface to 19 �C at 5 cm depth
where the pressure is 2.20 kPa (1.71 + 0.49 kPa). This temperature
variation in the evaporator can drastically reduce the generation of
cooling power in an ACS. There are two practical approaches to
minimize the negative effect of the hydrostatic pressure of water
in an LP evaporator, (i) falling film evaporation, and (ii) capillary-
assisted evaporation.

There are several studies investigating falling film evaporation
from the outside surface of plain and enhanced (structured) tubes
for refrigeration applications. Ribatski and Jacobi [5] reviewed
experimental and theoretical studies of falling film evaporation
and concluded that the heat transfer coefficient of enhanced tubes
was up to 10 times greater than that of plain tubes. Yang and Shen
[6] investigated how the heat transfer coefficient of falling films
was affected by flow density, evaporation temperatures, and tem-
perature difference between the wall and the saturated water.
They showed that when the flow density was increased from
0.013 kg/(m s) to 0.062 kg/(m s), the heat transfer coefficient was
increased from 5000W/(m2 K) to 30,000 W/(m2 K). Li et al. [7]
measured the average heat transfer coefficients of water falling
films on five types of enhanced tubes, with plain tubes as a bench-
mark. The tests were conducted at 1 kPa and the results showed
that tubes with enhanced outer and inner surfaces were required
to achieve high heat transfer flux (22 kW/m2). Li et al. [8] also
tested recently commercialized enhanced tubes with 19 and 26
fins per inch (FPI) (Turbo CAB�, Wolverine Tube Inc.) and found
that they provided overall heat transfer coefficients of 3000–
4000W/(m2 K) at a falling film flow rate of 1 m3/h and tempera-
ture of 15 �C. Their work confirmed that tubes with enhanced inner
surfaces provided better heat transfer performance. While falling
film evaporators can provide large cooling capacities in a low foot-
print, the need for equal distribution of refrigerant on horizontal
tubes, parasitic power consumption (internal pump and circula-
tor), and liquid spray equipment make falling film evaporators
impractical for an ACS installed in a light-duty vehicle A/C system.

For low cooling capacities (less than 2 kW), capillary-assisted
evaporators take advantage of uniform evaporation along the
tubes, have no parasitic power consumption (no pump or circula-
tor), a lower weight and less complexity. Low pressure capillary-
assisted evaporation for ACS applications is relatively novel, and
there are limited studies available in the literature. Capillary-
assisted flow and evaporation inside a circumferential rectangular
micro groove was studied by Xia et al. [9,10] for a silica gel–water
ACS. A heat transfer tube with outside circumferential micro-
grooves was immersed into a pool of liquid. The fluid flowing
inside the tube heated the thin liquid film located in the outer
micro-grooves where the liquid water rose along the micro-
grooves due to capillary action and evaporated. Xia et al. also
investigated the factors influencing the capillary-assisted evapora-
tion performance, such as the immersion depth, evaporation pres-
sure, and superheating degree. Their experimental results showed
that there was a positive correlation between the evaporation heat
transfer coefficient and the evaporation pressure, and negative cor-
relation for the superheating and immersion depth. For water, i.e.
at saturation temperature of 5 �C, wall superheat of 4 �C, and
dimensionless liquid level (ratio of the immersion depth to tube
diameter) of 0.5, the evaporation heat transfer coefficient was
3500W/(m2 K) and when the dimensionless liquid level was
0.25, the film side heat transfer coefficient was 5500 W/(m2 K) [9].

Chen et al. [11] used a capillary-assisted evaporator in the
experimental study of a compact silica gel–water ACS. The evapo-
rator consisted of five trays and each tray contained nine copper
tubes with outside micro-grooves. Capillary-assisted evaporation
was employed in these evaporators based on Refs. [9,10]. They
achieved an evaporation heat transfer coefficient of about
5000W/(m2 K). Lanzerath et al. [12] studied the combination of
finned tubes and thermal coating for capillary-assisted evaporation
at low pressures. Their investigation showed a strong dependency
of the evaporation heat transfer coefficient on the filling level.
Their study also established that the combination of macroscopic
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fin structures and micro porous coatings yielded evaporation heat
transfer coefficient of 5500 W/(m2 K) compared with ordinary
plain tubes with the evaporation heat transfer coefficient of
500 W/(m2 K). Sabir and Bwalya [13] observed that an internally
powder coated evaporator had a greater overall heat transfer coef-
ficient compared to evaporators with deep and shallow internal
grooves.

Most studies focused only on enhancing the capillary heat
transfer coefficient and they do not reflect the importance of the
overall heat transfer coefficient, and therefore this research
attempts to fill this major void in the literature pertaining to LP
evaporators. High evaporation heat transfer coefficients (4000–
8000 W/(m2 K)) can be achieved from capillary-assisted evapora-
tion due to the water phase change on the outer surface of the
tubes. The previous studies focused only on enhancing the heat
transfer coefficient from the external surface of the tubes and they
did not report the importance of the effects of other thermal resis-
tances to the heat transfer. The importance of the thermal resis-
tances has not been assessed before for LP capillary-assisted
evaporation in ACS applications. To generate cooling, the heat
has to be transferred from the chilled liquid water flowing inside
the tube, to the tube wall, and finally, to the refrigerant. In this pro-
cess, the main thermal resistance to the heat transfer is the low
chilled water heat transfer coefficient (compared with the evapora-
tion heat transfer coefficient on the outer surface of the tube)
because there is no phase change. Since it is not possible to reach
high heat transfer coefficient using a single-phase internal fluid,
this study is focused on the overall heat transfer coefficient calcu-
lation of capillary-assisted evaporators.

In this study, five enhanced tubes with different fin geometries
were tested under different operating temperatures and pressures.
The main goals in this research were to find the maximum achiev-
able cooling capacities and overall heat transfer coefficients, and to
determine the most suitable tube for use in a LP evaporator. Also, a
comprehensive parametric study was conducted on the selected
tube under different refrigerant heights, dead volumes inside the
evaporator, and chilled water flow rates. The newer enhanced
tubes from Wolverine Tube Inc. (Turbo ELP, Turbo CLF, Turbo
Chil-40 and 26 FPI) and Wieland Thermal Solutions (GEWA-KS-
40 FPI) have not been studied before for LP capillary-assisted evap-
oration for ACS applications. The science behind the different
regimes of cooling power as a function of liquid refrigerant height
in the evaporator is one of the novel contributions of this research.
(a)

Fins

Pooled water

Capillary water

Tube axis

x

y

Fig. 1. Capillary-assisted evaporator tubes: (a) side view, and (b) cross-sec
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Fig. 2. Capillary-assisted evaporator built for testing diffe
LP evaporators are very critical in enhancing the performance of
ACS as they do not consume parasitic energy. This research demon-
strates the utilization of an LP evaporator in an ACS where low-
grade waste heat energy is available.
2. Brief mechanism of capillary-assisted evaporation

Due to surface tension, the liquid–vapor interface inside the
rectangular-groove creates curvature, which leads to a pressure
jump across the interface. This pressure jump can be calculated
by the augmented Young–Laplace equation [14]. The curvature
increases gradually along the groove in the circumferential direc-
tion, creating a pressure gradient due to meniscus deformation
[15], which is responsible for the upward flow of the liquid. The
extended meniscus region is divided into three regions: (I) non-
evaporating region, (II) evaporating thin film region, and the (III)
bulk region [16]. Heat transfer is concentrated at region II where
the liquid film is extremely thin and the thermal resistance is very
low, creating an evaporating flow [17]. Further studies of capillary-
assisted evaporation in rectangular grooves are presented in Refs.
[10,15,16,18], and studies of triangular grooves can be found in
Refs. [17,19].
3. Experimental details

A capillary-assisted evaporator tube with its finned outer sur-
face in contact with a pool of liquid is schematically shown in
Fig. 1. The fins draw liquid by capillary action such that the outside
surface of the tube is covered. Thermal fluid (chilled water) pro-
vided by a temperature control system (TCS) is circulated inside
the tube and heat is transferred to the thin liquid film on the out-
side of the tube leading to evaporation.

A capillary-assisted evaporator was designed and built as
shown in Fig. 2. The evaporator had a four-pass arrangement with
a total tube length of 1.54 m. The tube was placed horizontally at
the bottom of the evaporator chamber, as shown in Fig. 2b, to min-
imize the required height of the water pool. The temperature, pres-
sure, and chilled water flow rate variations in the evaporator were
monitored with six Type T thermocouples with accuracy of 0.75%
of reading (Omega, model #5SRTC-TT-T-36-36), a pressure trans-
ducer with 0–34.5 kPa operating range and ±0.4 kPa accuracy
(Omega, model #PX309-005AI), and a positive displacement flow
(b)
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tional view. The x-direction is defined to be along the axis of the tube.
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rent enhanced tubes: (a) top view, and (b) side view.
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Fig. 3. (a) Schematic of the evaporator experimental setup, (b) the actual experimental setup and the main components, and (c) custom-built heat exchangers prepared for
the experiments.

Table 1
Base-case operating conditions for the experiments.

Parameter Values

Thermal fluid (chilled water) inlet temperatures (�C) 10 15 20
Thermal fluid (chilled water) flow rate (kg/min) 2.4–2.7 2.4–2.7 2.4–2.7
Evaporator pressure (kPa) 0.5 0.6 0.8
Amount of water in the evaporator at start of experiment (g) 1200 1200 1200
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meter with the accuracy of 0.5% of reading (FLOMEC, Model #
OM015S001-222). The thermocouples used to measure the outside
wall temperature of the tubes (Ttube,1 and Ttube,2) were in contact
with top of the tube at two locations as shown in Fig. 2a. The ther-
mocouples used to measure the liquid refrigerant temperature
(Tevap,1 and Tevap,2) were placed in the refrigerant (liquid water) at
positions shown in Fig. 2a, and positioned to remain submerged
throughout the tests. The thermocouples were consistently placed
in the same positions for tests with different tubes.

A schematic diagram and photographs of the experimental
setup designed and constructed to measure the cooling capacity
and overall heat transfer coefficient of evaporator tubes is shown
in Fig. 3. The setup consisted of a temperature control system
(TCS) and a variable speed pump to provide a constant tempera-
ture thermal fluid (chilled water) to the evaporator at different
mass flow rates. Control valves were employed to regulate the
pressure inside the evaporator. To protect the vacuum pump from
the water vapor produced by the evaporator, two dry ice traps
(cold traps) (LIT-10025, LACO Technologies) was installed before
the vacuum pump. The cold traps (dry ice and IPA, �77 �C) were
operated in parallel; the dry ice was replenished during the exper-
iment; and they were able to capture the water evaporated in each
experiment. The vacuum pump and cold trap in this setup were
used to mimic the water vapor uptake of ACS adsorber beds with
the key difference of maintaining a constant pressure (below the
saturation pressure) in the evaporator.

To begin each experiment, the evaporator was evacuated, and
then filled with water (1200 g) to immerse the evaporator tube
in water. When the temperatures and pressure inside the evapora-
tor became constant, the control valve was opened and adjusted
until the evaporator pressure reached the specified value (0.5, 0.6
or 0.8 kPa) as per the operating conditions summarized in Table 1.
Experiments began with submerged evaporator tubes, and contin-
ued through the regime where capillary evaporation maintains the
evaporation heat transfer rate as the height of pooled water
decreased, and ended when the evaporator chamber was dry. Tests
were conducted on five types of enhanced heat transfer tubes with
different fin structures and on a plain tube as a benchmark, as
listed in Table 2.
4. Data analysis

The chilled water inlet and outlet temperatures, Tchilled,i and
Tchilled,o as shown in Fig. 2a, and mass flow rate as given in Table 1,
are used to calculate the heat flow rate [20] as follows:

_qevap ¼ _mchilled cp;chilled ðTchilled;i � Tchilled;oÞ ð1Þ



Table 2
Geometric details of the enhanced tubes used for the experiments.

Tube name and details Fin structure 5� zoom view

Turbo Chil-26 FPI (Wolverine Tube Inc.)
Copper Alloys C12200
Fin type: continuous and parallel fins
OD: ¾00 (19.05 mm)
Fin height: 1.422 mm
Min. wall under fins: 0.737 mm
Inside surface area: 0.049 m2/m
Outside surface area: 0.193 m2/m

Turbo Chil-40 FPI (Wolverine Tube Inc.)
Copper Alloys C12200
Fin type: continuous and parallel fins
OD: ¾00 (19.05 mm)
Fin height: 1.473 mm
Min. wall under fins: 0.635 mm
Inside surface area: 0.051 m2/m
Outside surface area: 0.263 m2/m

Turbo ELP (Wolverine Tube Inc.)
Copper Alloys C12200
Fin type: interrupted micro pin fins
OD: ¾00 (19.05 mm)
Fin height: 0.5 mm
Min. wall under fins: 0.889
Inside surface area: 0.073 m2/m
Outside surface area: 194.8 m2/m

Turbo CLF-40 FPI (Wolverine Tube Inc.)
Copper Alloys C12200
Fin type: continuous with interrupted cross heads on top of the fin OD: ¾00 (19.05 mm)
Fin height: 0.965 mm
Min. wall under fins: 0.787 mm
Inside surface area: 0.0549 m2/m
Outside surface area: 0.2173 m2/m

GEWA-KS-40 FPI (Wieland Thermal Solutions)
Copper Alloys C12200
Fin type: continuous and parallel fins
OD: ¾00 (19.05 mm)
Fin height: 0.9 mm
Min. wall under fins: 0.7 mm
Inside surface area: 0.0489 m2/m
Outside surface area: 0.194 m2/m

Plain Tube
Copper Alloys C12200
OD: ¾00 (19.05 mm)
Inside surface area: 0.0547 m2/m
Outside surface area: 0.0598 m2/m
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The total evaporation rate is calculated by time averaging the
heat flow rate given in Eq. (1):

_Qevap ¼
R t2
t1

_qevap dt

t2 � t1
ð2Þ

where t1 and t2 are the beginning and end of the time when the
temperatures in the evaporator are constant. Finally, the overall
evaporator heat transfer conductance, UA is

UA ¼
_Qevap

DTLMTD
ð3Þ

where the logarithmic mean temperature difference between the
chilled water circuit and the refrigerant is calculated by

DTLMTD ¼ Tchilled;i � Tchilled;o

ln Tchilled;i�Tevap
Tchilled;o�Tevap

� � ð4Þ

where Tevap is the average of the evaporation temperatures Tevap;1

and Tevap;2 as shown in Fig. 2a. Aevap is chosen as the outside heat
transfer surface area of the plain tube in order to having a reference
(nominal) surface area for the calculation of Uevap for all tubes.

The systematic uncertainty [21] in the evaporator heat transfer
rate calculation, Eq. (1), is:

d _qevap
_qevap

� �
systematic

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d _mchilled

_mchilled

� �2

þ dðTchilled;i � Tchilled;oÞ
Tchilled;i � Tchilled;o

� �2
s

ð5Þ

where

dðTchilled;i � Tchilled;oÞ
Tchilled;i � Tchilled;o

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dTchilled;i

Tchilled;i

� �2

þ dTchilled;o

Tchilled;o

� �2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:00752 þ 0:00752

q
¼ 0:01 ð6Þ

Thus, the maximum systematic uncertainty in the calculation of
evaporator heat transfer rate is:

d _qevap
_qevap

� �
systematic

� 100 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0052 þ 0:012

q
¼ 1:1% ð7Þ
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Also, the standard deviation for _qevap due to the random uncer-
tainty is 4.2%. Thus the maximum uncertainty of _qevap during the
experiments is 5.3% (=1.1% + 4.2%). The systematic uncertainty of
the evaporation heat transfer rate is

dUevap

Uevap

� �
systematic

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d _Qevap
_Qevap

 !2

systematic

þ dDTLM;evap

DTLM;evap

� �2

vuuut ð8Þ

where d _Qevap
_Qevap

� �
systematic

and dDTLM;evap
DTLM;evap

are equal to 1.1% and 0.04%,

respectively. Therefore, dUevap
Uevap

� �
systematic

is equal to 1.1% (�(1.1%

+ 0.04%). The random uncertainty in the measurement for Uevap over
time is 7.4%. Thus, the maximum uncertainty in the calculation of
evaporator heat transfer coefficient is 8.5% (=1.1% + 7.4%).
(b)

Chilled,i

Chilled,o

Tube1,2

evap1,2

Fig. 4. The behavior of evaporator with 1.47 mm, 40 FPI tubes (Turbo Chil-40 FPI) at
the thermal fluid (chilled water) inlet temperature of 15 �C vs. time: (a) evaporator
pressure operated from flooded to dry and (b) temperature at different locations in
the evaporator.
5. Results and discussion

5.1. Base-case operating condition

Fig. 4 shows the operating pressure and temperatures of the
evaporator with a fin height of 1.473 mm and 40 FPI (Turbo Chil-
40 FPI) for a constant 15 �C thermal fluid inlet temperature. As
shown in Fig. 4a, when the control valve between the evaporator
and the cold trap is opened, the evaporator pressure decreases,
and then remains constant until the evaporator runs out of water.
The six thermocouples read 15 �C at the start of the experiment.
After the valve is opened, the temperature of the tubes and refrig-
erant drop as shown in Fig. 4b. The total heat transfer rate and the
evaporator heat transfer coefficient are calculated from the steady
state data from the region demarcated in gray in Fig. 4. In Fig. 5, the
performance of this evaporator is compared with one built from
plain tubes. The Turbo Chil-40 FPI tube has a heat transfer coeffi-
cient of 767W/(m2 K) compared to 308W/(m2 K) for the plain
tube. As shown in Fig. 5a and b, the capillary phenomenon on the
finned tubes results in an almost constant evaporation heat trans-
fer rate and, consequently, constant evaporator heat transfer coef-
ficient over time. As the height of the liquid water decreases, the
capillary action continues to cover the entire outside surface of
the tube. Fig. 5c and d shows that the heat transfer rate and the
heat transfer coefficient for the plain tube drop as a function of
time. With the plain tube, as the height of the liquid water inside
the evaporator decreases, the area of the tube surface in contact
with the water decreases, and this results in a decrease in the heat
transfer rate and heat transfer coefficient.

To evaluate the performance of tubes with the five distinct fin
types listed in Table 2, each tube type was tested with thermal
fluid inlet temperatures of 10, 15, and 20 �C under the operating
conditions summarized in Table 1. The total heat transfer rates
and the heat transfer coefficients of the evaporator with each fin
type are shown in Fig. 6. The enhanced tubes had heat transfer
rates significantly greater than that of the plain tube. The evapora-
tor with fin height of 1.473 mm and 40 FPI (Turbo Chil-40 FPI) pro-
vided the highest total heat transfer rate, 422 W, when operated at
20 �C, followed by Turbo Chil-26 FPI and Turbo ELP-42 FPI. The
evaporator with Turbo Chil-40 FPI tubes had an overall heat trans-
fer coefficient ranging from 596 to 888W/(m2 K) when operated
with inlet temperatures of 10–20 �C, as shown in Fig. 6b. While
for the plain tube evaporator the heat transfer coefficient varies
from 285 to 365W/(m2 K).

Comparing the evaporator heat transfer coefficients of the
enhanced tubes, as shown in Fig. 6b, indicates that having contin-
uous parallel fins, such as Turbo Chil-40 FPI and Turbo Chil-26 FPI,
and high heat transfer surface area, such as Turbo ELP, are the two
most important parameters in the design of capillary-assisted
evaporators. The evaporator with 1.422 mm fin height and 26 FPI
tubes (Turbo Chil-26 FPI) had a greater heat transfer coefficient
than the one with 0.9 mm fin height and 40 FPI (GEWA-KS-40
FPI) despite having identical internal and external heat transfer
surface areas, indicating the importance of fin height to capillary
action. Thus, the main features of an enhanced tube designed for
capillary-assisted evaporator are: (i) continuous parallel fins, (ii)
high fin height, and (iii) high heat transfer surface area. As a result,
it can be concluded that the evaporator built with Turbo Chil-40
FPI for ACS provides the highest cooling power compared with
the other enhanced tubes.

The internal heat transfer coefficient can be calculated by fol-
lowing expression [22]:
1
UA

¼ 1
hoAo

þ 1
hiAi

þ Ro;finned tube

� �
ð9Þ

The first term on the right hand side of Eq. (9) describes the
external convective heat resistance due to capillary evaporation,
the second term is the internal convective heat resistance due to
single phase flow inside the tube, and the third term is the conduc-
tive heat resistance of the tube wall. From the analysis shown in
Appendix A, the internal convective heat resistance can be calcu-
lated. As summarized in Table 3, 91.3% of the overall thermal resis-
tance of Turbo Chil-40 FPI tubes is due to the internal convective
resistance, while the conductive resistance of tube and external
convective resistance contribute only 4.7% and 4.0% of the overall
thermal resistance, respectively.
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Fig. 5. Effect of capillary phenomenon on the performance of the LP evaporator vs. time. Heat transfer rate and evaporator heat transfer coefficient achieved by using (a) and
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5.2. Parametric study

In this section, the effects of water height, dead volume inside
the evaporator, and thermal fluid (chilled water) mass flow rate
on the performance of the evaporator built with Turbo Chil-40
FPI are studied. To test the effect of water height on the perfor-
mance, the evaporator was filled with 2.4 kg of water to submerge
the tubes by �2 cm as shown in Fig. 7b. Fig. 7a shows the varia-



Table 3
Conductive and Convective resistances at different thermal conductivities.

Tube material Wall thermal
conductivity (W/m K)

Ext. convection
resistance (K/W)

Conductive
resistance (K/W)

Int. convection
resistance (K/W)

Overall thermal
resistance (K/W)

Copper Alloys C12200 340 4.87 � 10�4 5.78 � 10�4 1.12 � 10�2 1.23 � 10�2
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Fig. 8. Effect of water non-dimensional height, H⁄, on (a) total evaporation heat
transfer rate and (b) evaporator heat transfer coefficient of capillary-assisted
evaporator with 1.47 mm, 40 FPI tubes (Turbo Chil-40 FPI), Dtube = 19.05 mm at
thermal fluid (chilled water) inlet temperature of 15 �C and mass flow rate of
2.53 kg/min. For the evaporator heat transfer coefficient, the plain tube surface area
is A = 9.22 � 10�2 m2.
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tions of heat transfer rate as a function of water height versus time
during operation with Tchilled,i of 15 �C and a mass flow rate of
2.53 kg/min. The evaporation heat transfer rate is divided into
three regions: region I (tube is fully submerged), region II (transi-
tion region), and region III (water height is lower than the tube
diameter and the capillary evaporation is in effect). In region I,
evaporation heat transfer rate is about 200W. In this region, the
hydrostatic pressure creates a pressure gradient between liquid
water–vapor interface and the bottom of the evaporator. As a
result, saturation temperature of water increases at the bottom
of the evaporator, decreases the temperature difference between
the chilled water circulated inside the tube and the water (refrig-
erant) located outside the tube, reducing the cooling power. When
evaporation lowers the water level to the height of the tube diam-
eter, the hydrostatic pressure is reduced and the heat transfer rate
increases from 220 to 300 W (region II). In region III, the heat
transfer rate remains high as the water level decreases further
due to thin film capillary evaporation. The heat transfer coefficient
of the evaporation was 568W/(m2 K) in region I, and increased to
767W/(m2 K) in region III.

The effect of water non-dimensional height, H⁄, inside the evap-
orator on the total evaporation heat transfer rate and evaporator
heat transfer coefficient is shown in Fig. 8. H⁄ represents the ratio
of water (refrigerant) height to the tube diameter. Fig. 8a shows
that by increasing H⁄ from one to 1.8 (80% increase), the total evap-
oration heat transfer rate reduces by 25% from 313W to 250 W.
Accordingly, the evaporator heat transfer coefficient reduced by
33% as shown in Fig. 8b.

In order to determine whether the dead volume inside the
evaporator affects the performance, an acrylic block was placed
above the tubes to reduce the interior volume of the evaporator
by 25% as schematically shown in Fig. 9. The evaporator was tested
with and without the filler block, operating with thermal fluid
Tchilled,i of 15 �C and _mchilled;i of 2.53 kg/min, and starting with
1.2 kg of water. Calculating from steady state operating tempera-
tures (i.e. after the initial period in which the thermal inertia of
the evaporator impacts refrigerant temperature), it was found that
reducing the interior volume of the evaporator decreased the heat
transfer rate by 2.3% and the heat transfer coefficient by 10%. The
slight change observed in the heat transfer rate was within the
uncertainty of the test and may reflect a small increase, due to
the filler block, in the mass transfer resistance for water vapor
leaving the evaporator.

Xia et al. measured heat transfer coefficients ranging from 4000
to 8000 W/(m2 K) for capillary evaporation of water on finned
tubes around the circumference of the tubes [9,10]. However, the
single-phase heat transfer from the thermal fluid inside the tube
to the refrigerant on the surface of the tube, where heat transfer
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Fig. 10. Effect of chilled water mass flow rate on (a) total evaporation heat transfer
rate and (b) evaporator heat transfer coefficient for a capillary-assisted evaporator
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temperature of 15 �C. For the evaporator heat transfer coefficient, the plain tube
surface area is A = 9.22 � 10�2 m2.
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with phase-change occurs, is always limited by the heat transfer
conductance of the thermal fluid (chilled water, hiAi). The evapora-
tor heat transfer coefficient can be increased by increasing the flow
rate inside the tube. The effect of thermal fluid mass flow rate on
the total heat transfer rate and evaporator heat transfer coefficient
was measured using the evaporator with Turbo Chil-40 FPI tube. It
can be seen in Fig. 10 that increasing the mass flow rate from
2.5 kg/min to 15.3 kg/min (6.1 times) increases the total evapora-
tion heat transfer rate by from 313W to 373W (20%), and the
evaporator heat transfer coefficient increases from 767W/(m2 K)
to 1613W/(m2 K) (110%). However, higher thermal fluid mass flow
rates require higher water pump power consumption, which is a
consideration for overall ACS system designs.
6. Conclusions

Five types of capillary-assisted tubes were evaluated for a low
pressure evaporator for ACS. The evaporator consisted of horizon-
tal capillary-assisted tubes that were in contact with a pool of
water while the pressure in the evaporator was maintained at
0.5, 0.6 or 0.8 kPa for tests with thermal fluid inlet temperatures
of 10, 15 and 20 �C, respectively. The total heat transfer rate and
heat transfer coefficient of evaporators with a plain tube and five
different enhanced tubes with various surface geometries were
experimentally investigated. The experimental results indicated
that Turbo Chil-40 FPI provided the highest heat transfer rate
and evaporator heat transfer coefficient. The main findings of this
study are summarized below:

� Tubes with continuous parallel fins on their outer surfaces had
significantly higher heat transfer rate and heat transfer coeffi-
cients relative to plain tubes.

� Experimental analyses indicated that the evaporator perfor-
mance was limited by the heat transfer resistance of the ther-
mal fluid (chilled water) flowing inside the tubes.

� Increasing the thermal fluid (chilled water) mass flow rate from
2.5 kg/min to 15.3 kg/min (6.1 times) increased the total evap-
oration heat transfer rate and evaporator heat transfer coeffi-
cient by 20% and 110%, respectively.

� To achieve the highest heat transfer rate, the refrigerant (water)
height in the evaporator had to be less than the tube diameter.

� The interior volume above the enhanced tubes of the capillary-
assisted evaporator did not have a significant effect on evapora-
tor performance.

Following the detailed evaluation of low pressure evaporators,
the evaporator with the highest performing capillary-assisted
tubes (Turbo Chil-40 FPI) was used in tests of a lab-scale ACS sys-
tem [23]. A low pressure evaporator with smaller tube diameters
and a header designed to decrease tube spacing and maximize
overall heat transfer length has also been constructed and tested.
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Appendix A

To calculate the internal convective resistance due to a fluid cir-
culated in a finned tube, the following steps should be taken. The
tube of interest in this analysis is a Turbo Chil-40 FPI with circum-
ferential, rectangular cross-section fins. The efficiency of a fin
located on the surface of the tube can be calculated from Eqs.
(A1)–(A5) [22]

gf ¼ C
K1ðmr1ÞI1ðmr2cÞ � I1ðmr1ÞK1ðmr2cÞ
I0ðmr1ÞK1ðmr2cÞ þ K0ðmr1ÞI1ðmr2cÞ
� �

ðA1Þ

C ¼ ð2r1=mÞ
ðr22c � r21Þ

ðA2Þ

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h
ktf

� �s
ðA3Þ

r2c ¼ r2 þ ðtf =2Þ ðA4Þ
Af ¼ 2pðr22c � r21Þ ðA5Þ
where r1 and r2 are the distances from the center of the tube to the
fin base and fin tip, respectively. I0, and K0 in Eq. (A1) are modified,
zero-order Bessel functions of the first and second kinds, respec-
tively. I1, and K1 in Eq. (A1) are modified, first-order Bessel functions
of the first and second kinds, respectively. tf in Eq. (A3) is the fin



Table A1
Detailed geometry of Turbo Chil-40 FPI tubes.

Parameter Value

L 1.54 m
r0 7.417 � 10�3 m
r1 8.052 � 10�3 m
r2 9.525 � 10�3 m
tf 1.59 � 10�4 m
tb 4.76 � 10�4 m
ho 5000 W/m2 K
k 340 W/m K
At 0.41 m2

A 0.0922 m2

Ai 0.0796 m2
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thickness and Af in Eq. (A5) is the fin heat transfer surface area. The
total external heat transfer surface area of the finned tube is calcu-
lated as follows:

At ¼ NðAf þ AbÞ ðA6Þ
Ab ¼ 2pr1tb ðA7Þ
where N is the total number of fins, and Ab and tb are the prime
(plain) heat transfer surface area of the finned tube and the space
between two fins, respectively. Using Eqs. (A1), (A5), and (A6) the
overall efficiency of the finned tube can be calculated [22]:

go;fin ¼ 1� Af

Af þ Ab
ð1� gf Þ ðA8Þ

Consequently, the conductive heat transfer resistance due to
the fins of the finned tube can be estimated.

Rfin ¼ 1
go;finhoAt

ðA9Þ

where the convection coefficient of ho is measured from experimen-
tations. Also, the conductive resistance of wall located under the
fins can be calculated as follows:

Rwall ¼ lnðr1=r0Þ
2pkL

ðA10Þ

where r0 and L are the internal radius and length of the finned tube,
respectively. Rfin and Rwall are thermal resistances in series. There-
fore, the overall conductive resistance of the finned tube is calcu-
lated by Eq. (A11).

Ro;finned tube ¼ Rfin þ Rwall ðA11Þ
Finally, Eq. (A12) gives the internal convective heat transfer

resistance of the finned tube.

1
hiAi

¼ 1
UA

� 1
hoAo

þ Ro;finned tube

� �
ðA12Þ

From the experimental data of Xu et al. [9], the capillary evap-
oration coefficient on the external surface of a finned tube varies
between 4000 and 6000 W/(m2 K). Information required to calcu-
late the internal convective resistance of a Turbo Chil-40 FPI tube
is listed in Table A1.

By substituting the values given in Table A1, a fin efficiency, gf ,
is 0.86 and the overall efficiency of the finned tube, go;fin, is 0.88.
Using these data, the conductive resistance of the tube and internal
convective resistance of the finned tube can be calculates as shown
in Table 3.
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